Our Data Science Instructors

Our team of experienced, full-time instructional faculty utilize real-world case studies to teach best practices in statistical analysis, machine learning, natural language processing and data visualization that will prepare you for a successful career in Data Science.

Jack Bennetto

Head of Data Science Curriculum & Lead Instructor - Seattle

Jack has been teaching Data Science at Galvanize since 2016, and is now Head of Curriculum for Data Science Immersive. Prior to that he worked at Microsoft for a decade in performance, forensics, analysis tools, and infrastructure and at a couple startups in bioinformatics and fantasy sports in New York City. He received his BS from Yale and PhD in theoretical physics from Rutgers University, where he built computer models of dislocations in silicon. Jack actively answers data science related questions on Quora and more of his work can be seen on ResearchGate.

Dr. Hamid Molavian

Data Science Instructor, Sr. Data Scientist - San Francisco

Hamid received his Ph.D. in computational Physics from University of Waterloo and was the first to predict Quantum Spin Ice using modeling techniques. In 2010, Hamid co-founded and built one of the first robust search engines for apps with the capability to search content inside apps by applying Machine Learning and optimization techniques. Hamid also worked on applying machine learning techniques in IOT space and worked on building a smart tracking device for Alzheimer people and pets. You can learn more about Hamid on his Google Scholar profile here.

Juliana Duncan

Lead Data Science Instructor, Austin

Juliana is a data and computational scientist as well as an experienced instructor. She received her Ph.D. in computational chemistry from the University of Texas at Austin where she developed a novel saddle point finding method, applied machine learning techniques to accelerate molecular dynamic simulations, and used computational methods to simulate chemical processes. As an Assistant Professor of Practice at UT Austin, Juliana led and created all curricula for an undergraduate computational science research program. She also led a research group that used high throughput computing and machine learning to find novel materials for catalysis, and explored global optimization methods.

Matt Zeidenberg

Lead Data Science Instructor, New York

Matt is an experienced data scientist and instructor. He has six years of college-level teaching experience in computer science. He has a PhD in Computer Science with a specialty in artificial intelligence and machine learning from the University of Wisconsin, a second PhD, also from the University of Wisconsin, in Sociology, and an undergraduate honors degree in Physics from Harvard. He also wrote a book on artificial neural network applications to artificial intelligence. He has many years of experience as a researcher both in academia and for the government, focusing on data science research projects involving educational and labor market data. In recent years he has used machine learning libraries in Python and R in this research. He also has a good deal of experience with experimental social science research (randomized controlled trials).

Philip Geurin

Instructor & Senior Data Scientist, Seattle

Philip Geurin is a Data Scientist specializing in forecasting and simulation. At Uber, he's forecasted trillions of user actions in 60,000 different time series. He was funded by the NSF twice to simulate deterministic game playing and stock market scenarios using GLMs and genetic modeling. As an instructor, he's taught bedside manner to doctors, been a feedback consultant for NovoNordisk technical management, and wraps it up in a 10-years-of-improv-theater burrito.

Sean Reed

Senior Data Scientist - New York

Sean is a Data Scientist with a Masters degree in Economics and an Undergraduate degree in Physics. Sean is a AWS Certified Solutions Architect, a Amazon Web Services SysOps Administrator, and has over ten years of professional experience. To learn more about Sean, check out his CourseReport video comparing Python versus R for Data Science.

Frank Burkholder

Lead Instructor & Principal Data Scientist, Denver

Frank received B.S. degrees from Stanford University in Mechanical Engineering and Biology, followed by an M.S.M.E. from the University of Wisconsin-Madison and a Ph.D. from the University of Colorado-Boulder. He worked in the Concentrating Solar Power (CSP) industry for more than a decade at the National Renewable Energy Laboratory and Abengoa, a Spanish company where he led and managed R&D in solar collector technology. The decreasing costs of photovoltaics and batteries led him to pivot out of CSP in 2016 and begin working as a data scientist. Presently, he leads data science instruction at Galvanize's Denver Platte campus where he teaches all DSI subjects, and has expanded deep learning's influence in the curriculum. Frank is passionate about learning and teaching. He's taught throughout his career at all grade levels, and spent 2 years as a Peace Corps Volunteer in Namibia teaching math and science. Read more about Frank's work on his Google Scholar page.

Alexander Blitstein

Associate Data Science Instructor, New York

Prior to Galvanize, Alex graduated with a mathematics degree from Binghamton University. He began his career in the Ecommerce industry before turning his attention within the healthcare sector working as a senior business/data analyst at CareMount Medical and Weill Cornell Medical College. After his work within the healthcare industry, Alex graduated from the Galvanize Data Science immersive program himself and has worked in the industry before jumping back with Galvanize as an instructor. His interests include data engineering, deep learning, recommenders, and student success.

Land Belenky

Lead Data Science Instructor, Remote

Land received his Ph.D. in Materials Science and Engineering from the University of Wisconsin for his work creating and analyzing nano-scale superconductors and magnetic materials. As an engineer for Intel, GE and other high-tech companies, Land used Data Science and machine learning techniques to develop and control computerized manufacturing processes. After completing the Data science immersive at Galvanize, Land developed a deep learning based ultrasound probe, which is being patented and developed in conjunction with the University of Colorado Medical School.

Kin-Yip Chien

Associate Instructor, Los Angeles

Kin-Yip Chien is a data scientist and statistician who is passionate about data-driven solutions. He received his MS in Statistics from Texas A&M University and a BA in Neuroscience and Economics from Queens College and has applied statistical and machine learning methods to problems in gene expression analysis, commodity price prediction, automated comment moderation, and fake review detection. He is also an educator, having taught statistics courses and worked one-on-one with students to spread his excitement and knowledge of data science best practices.

Dan Rupp

Data Science Instructor, Austin

Dan graduated with a degree in Computer Science from Lake Forest College. He spent several years developing hospital management systems for the medical field. After his work in the healthcare industry, he turned his interest to data and graduated from the Galvanize Data Science Immersive program.